Page **1** of **11** Report No: 15732

Issue: 1

A quantitative suspension test for the evaluation of the bactericidal activity provided by 20/30 Labs Ltd using SOP L067 [Modified].

Tested according to BS EN1276: 2019

Date: 15/05/2020 Report Reference: 15732 Issue: 1

Prepared by: Joe Fitzsimons, Research Scientist, 20/30 Labs

Page **2** of **11** Report No: 15732

Issue: 1

Test Laboratory: 20/30 Labs Ltd.

Unit 6 Osyth Close

Brackmills Industrial Estate

Northampton NN4 7DY

Identification of Sample:

Product name: Biosan (4)

Batch number: S1/07/20

Expiry date: Not Given

Date of delivery: 2020/04/30

Client: Biosan Limited

Storage conditions: Room Temperature

Appearance of product: Clear Solution

Active substance(s) & their concentrations: Hypochlorous acid (HOCl), 0.04-0.05%

Product diluent recommended by the manufacturer for use: N/A – Product Ready to use.

Experimental Conditions:

Period of analysis: 12/05/2020 – 15/05/2020

Method justification: Dilution Neutralisation – Satisfactory recovery on all neutralisation

controls

Product diluent: Water

Product test concentrations: 80%, 50%, 1%

Appearance of product dilutions: Clear Solutions

Contact time: 10 seconds

Test temperature: 20°C

Interfering substances: 0.3g/L Bovine Albumin = Clean Conditions

Stability and appearance of test mixtures: Clear and homogenous

Incubation temperature: 36°C

Neutraliser: 10g/L Sodium Thiosulphate, 30g/L Polysorbate 80, 3g/L Lecithin, in Water

Test-organisms: Pseudomonas aeruginosa, Staphylococcus aureus, Enterococcus hirae,

Escherichia coli

Results – Test Organism: Pseudomonas aeruginosa ATCC 15442

Date of test: 12/05/2020

Method: Standard Dilution-Neutralisation,

Spread Plate

Neutraliser: 10g/L Sodium Thiosulphate, 30g/L Polysorbate 80, 3g/L Lecithin, in Water

Incubation temperature: 36°C

Product Diluent: Water

Media Used / Batch No. : TSA / 4255485

Responsible person: Joseph Fitzsimons

Test temperature: 20°C

Interfering substance: Clean Conditions -

0.3g/L Bovine Albumin

Appearance of test mixtures: Clear and

homogenous

Number of plates: 2 per V_C value

Valida	x =					
V _{C1}	84					
V _{C1}	43 + 41	80.5				
V	77	80.5				
V_{C2}	38 + 39					
30 ≤ \bar{x} of N _{V0} ≤ 160 ?						
	PASS					

Experin	nental Conditions (A)	x =	Neut	traliser Control	x =	Method Validation (<i>C</i>)		x =	
.,	59		.,	44		.,	50	56.5	
V _{C1}	33 + 26	52.5	V _{C1}	20 + 24	46	V _{C1}	26 + 24		
V	46	52.5		V	48	40	V	63	50.5
V_{C2}	16 + 30		V_{C2}	27 + 21		V_{C2}	31 + 32		
\bar{x} of A is $\geq 0.5 \bar{x}$ of N _{V0} ?			$\bar{x} \text{ of } \mathbf{B} \text{ is } \ge 0.5 \ \bar{x} \text{ of } \mathbf{N}_{V0} ?$			\bar{x} of <i>C</i> is $\geq 0.5 \bar{x}$ of <i>N</i> _{<i>V0</i>} ?			
PASS			PASS		PASS				

Page **4** of **11** Report No: 15732

Issue: 1

Test Suspension and Test Results

Test Suspension (N) 10 ⁻⁶ :		Toct Su	uspension (N) 10 ⁻⁷ :	\bar{x}_{wm} of $N =$	3.5x10 ⁸	
		1631.31	ispension (N) 10 .	$N_0 = N/10 =$	3.5x10 ⁷	
.,	339	.,	43	lg N =	8.54	
V _{C1}	166 + 173	V_{C1}	24 + 19	lg N ₀ =	7.54	
\/	353	W	38	7 17 × 1~ M × 7 70 2	PASS	
V_{C2}	163 + 190	V_{C2}	21 + 17	$7.17 \le \lg N_0 \le 7.70$?	FA33	

Real Conc. Of Product (%)*	Contact time (seconds)	Dilution step	V _{C1}		V _{C2}		N _a = (x̄ or x̄ _{wm}) x 10	lg N a	lg R
90	80 10	Neat	0 + 0	0	0 + 0	0	<1.4x10 ²	<2.15	>5.40
80		10 ⁻¹	0 + 0	0	0 + 0	0	<1.4X1U		
50	10	Neat	0 + 0	0	0 + 0	0	<1.4x10 ²	<2.15	>5.40
30	10	10 ⁻¹	0 + 0	0	0 + 0	0	<1.4X1U		
1	10	Neat	>330 + >330	>660	>330 + >330	>660	>6.6x10 ⁴	>4.82	<2.72
1	1 10	10 ⁻¹	>330 + >330	>660	>330 + >330	>660	>0.0X1U		

^{*}Active to Non-Active ranges

 V_c = Count per 1ml (one plate or more)

 $\bar{\mathbf{X}}$ = Mean of V_{C1} and V_{C2}

 $\bar{\mathbf{X}}_{\mathbf{Wm}}$ = Weighted mean of $\bar{\mathbf{X}}$

 \mathbf{R} = Reduction ($\lg R = \lg N_0 - \lg N_a$)

Results – Test Organism: Staphylococcus aureus ATCC 6538

Date of test: 12/05/2020

Method: Standard Dilution-Neutralisation,

Spread Plate

Neutraliser: 10g/L Sodium Thiosulphate, 30g/L Polysorbate 80, 3g/L Lecithin, in Water

Incubation temperature: 36°C

Product Diluent: Water

Media Used / Batch No. : TSA / 4255485

Responsible person: Joseph Fitzsimons

Test temperature: 20°C

Interfering substance: Clean Conditions -

0.3g/L Bovine Albumin

Appearance of test mixtures: Clear and

homogenous

Number of plates: 2 per V_C value

Valida	x =					
V _{C1}	67					
V _{C1}	37 + 30	74				
V _{C2}	81	/4				
V _{C2}	36 + 45					
$30 \le \bar{x} \text{ of } N_{V0} \le 160 ?$						
	PASS					

Experin	nental Conditions (A)	x =	Neut	traliser Control	x =	Method Validation (<i>C</i>)		x =	
	88		.,	68		.,	69		
V _{C1}	52 + 36	76.5	76 F	V _{C1}	29 + 39	70	V _{C1}	31 + 38	76.5
	65			72	70		84	70.5	
V_{C2}	32 + 33		V_{C2}	33 + 39		V_{C2}	44 + 40		
x	$\bar{\mathbf{x}}$ of \mathbf{A} is $\geq 0.5 \bar{\mathbf{x}}$ of \mathbf{N}_{V0} ? $\bar{\mathbf{x}}$ of \mathbf{B} is $\geq 0.5 \bar{\mathbf{x}}$ of \mathbf{N}_{V0} ? $\bar{\mathbf{x}}$ of \mathbf{C} is $\geq 0.5 \bar{\mathbf{x}}$			of <i>C</i> is ≥ 0.5 \bar{x} of <i>N</i> _V	,?				
PASS PASS			PASS						

Page **6** of **11** Report No: 15732

Issue: 1

Test Suspension and Test Results

Test Suspension (N) 10 ⁻⁶ :		Toct Su	uspension (N) 10 ⁻⁷ :	\bar{x}_{wm} of $N =$	3.2x10 ⁸
		1631.31	ispension (N) 10 .	$N_0 = N/10 =$	3.2x10 ⁷
.,	336	.,	32	lg N =	8.51
V _{C1}	158 + 178	V_{C1}	13 + 19	lg N ₀ =	7.51
\/	316	30		7.17 × ~ M × 7.70.2	PASS
V_{C2}	138 + 178	V_{C2}	14 + 16	$7.17 \le \lg N_0 \le 7.70$?	PASS

Real Conc. Of Product (%)*	Contact time (seconds)	Dilution step	V _{C1}		V _{C2}		$N_a = (\bar{x} \text{ or } \bar{x}_{wm}) \times 10$	lg N a	lg R
90 10	Neat	0 + 0	0	0 + 0	0	<1.4x10 ²	<2.15	>5.36	
80	80 10	10 ⁻¹	0 + 0	0	0 + 0	0	<1.4X10 ⁻	<2.15	/5.30
50	10	Neat	0 + 0	0	0 + 0	0	<1.4x10 ²	12.45	> F 2C
30	10	10 ⁻¹	0 + 0	0	0 + 0	0	<1.4X10	<2.15	>5.36
1	1 10	Neat	>330 + >330	>660	>330 + >330	>660	> C Cv104	>4.82	<2.69
1		10 ⁻¹	>330 + >330	>660	>330 + >330	>660	>6.6x10 ⁴		

^{*}Active to Non-Active ranges

 V_c = Count per 1ml (one plate or more)

 $\bar{\mathbf{X}}$ = Mean of V_{C1} and V_{C2}

 $\bar{\mathbf{X}}_{\mathbf{Wm}}$ = Weighted mean of $\bar{\mathbf{X}}$

 \mathbf{R} = Reduction ($\lg R = \lg N_0 - \lg N_a$)

Results - Test Organism: Enterococcus hirae ATCC 10541

Date of test: 13/05/2020

Method: Standard Dilution-Neutralisation,

Spread Plate

Neutraliser: 10g/L Sodium Thiosulphate, 30g/L Polysorbate 80, 3g/L Lecithin, in Water

Incubation temperature: 36°C

Product Diluent: Water

Media Used / Batch No. : TSA / 4255485

Responsible person: Joseph Fitzsimons

Test temperature: 20°C

Interfering substance: Clean Conditions -

0.3g/L Bovine Albumin

Appearance of test mixtures: Clear and

homogenous

Number of plates: 2 per V_C value

Valida	Validation Suspension (N_{Vo})					
V _{C1}	70					
VC1	45 + 25	68				
V _{C2}	66	06				
V _{C2}	34 + 32					
$30 \le \bar{x} \text{ of } N_{vo} \le 160 ?$						
	PASS					

Experin	nental Conditions (A)	x =	Neut	raliser Control (B)	x =	Method Validation (<i>C</i>)		x =	
.,	78		.,	82		.,	70		
V _{C1}	31 + 47	77	V _{C1}	36 + 46	80	V _{C1}	31 + 39	75	
V	76		.,	78		V _{C2}	80		
V _{C2}	41 + 35		V_{C2}	43 + 35			37 + 43		
x	\bar{x} of A is $\geq 0.5 \bar{x}$ of N _{V0} ?			$\bar{\mathbf{x}}$ of \mathbf{B} is $\geq 0.5 \bar{\mathbf{x}}$ of \mathbf{N}_{V0} ? $\bar{\mathbf{x}}$ of \mathbf{C} is $\geq 0.5 \bar{\mathbf{x}}$ of \mathbf{N}_{V0}			of C is $\ge 0.5 \bar{x}$ of N_{V0}	?	
PASS			PASS		PASS				

Page **8** of **11** Report No: 15732

Issue: 1

Test Suspension and Test Results

Test Suspension (N) 10 ⁻⁶ :		Toct Su	uspension (N) 10 ⁻⁷ :	\bar{x}_{wm} of $N =$	2.9x10 ⁸
		1631.31	ispension (N) 10 .	$N_0 = N/10 =$	2.9x10 ⁷
.,	301	.,	24	lg N =	8.46
V_{C1}	132 + 169	V_{C1}	13 + 11	lg N ₀ =	7.46
\ <u>\</u>	282	W	26	7.17 × la N. × 7.70 2	PASS
V_{C2}	158 + 124	V_{C2}	15 + 11	$7.17 \le \lg N_0 \le 7.70$?	PA33

Real Conc. Of Product (%)*	Contact time (seconds)	Dilution step	V _{C1}		V _{C2}		$N_a = (\bar{x} \text{ or } \bar{x}_{wm}) \times 10$	lg N a	lg R
90 10	Neat	0 + 0	0	0 + 0	0	<1.4x10 ²	<2.15	>5.32	
80	80 10	10 ⁻¹	0 + 0	0	0 + 0	0	<1.4X1U	<2.15	/3.32
50	10	Neat	0 + 0	0	0 + 0	0	<1.4x10 ²	<2.15	\E 27
30	10	10 ⁻¹	0 + 0	0	0 + 0	0	\1.4X10	\2.13	>5.32
1	4 40	Neat	>330 + >330	>660	>330 + >330	>660	> C Cv104	4.00	2.64
1 10	10 ⁻¹	>330 + >330	>660	>660 >330 + >330 >660 >6.6x10 ⁴		>p.px10	>4.82	<2.64	

^{*}Active to Non-Active ranges

 V_c = Count per 1ml (one plate or more)

 $\bar{\mathbf{X}}$ = Mean of V_{C1} and V_{C2}

 $\bar{\mathbf{X}}_{\mathbf{Wm}}$ = Weighted mean of $\bar{\mathbf{X}}$

 \mathbf{R} = Reduction ($\lg R = \lg N_0 - \lg N_a$)

Results – Test Organism: Escherichia coli NTCC 10538

Date of test: 12/05/2020

Method: Standard Dilution-Neutralisation,

Spread Plate

Neutraliser: 10g/L Sodium Thiosulphate, 30g/L Polysorbate 80, 3g/L Lecithin, in Water

Incubation temperature: 36°C

Product Diluent: Water

Media Used / Batch No. : TSA / 4255485

Responsible person: Joseph Fitzsimons

Test temperature: 20°C

Interfering substance: Clean Conditions -

0.3g/L Bovine Albumin

Appearance of test mixtures: Clear and

homogenous

Number of plates: 2 per V_C value

Valida	x =				
V _{C1}	72				
	34 + 38	68			
V _{C2}	64	00			
	27 + 37				
$30 \le \bar{x} \text{ of } N_{vo} \le 160 ?$					
PASS					

Experimental Conditions (A)		x =	Neutraliser Control (B)		x =	Method Validation (<i>C</i>)		x =	
.,	77	73.5		60		.,	62		
V _{C1}	38 + 39		72.5	V _{C1}	36 + 24	60	V _{C1}	36 + 26	59.5
V	70		/3.5		60			57	
V_{C2}	32 + 38		V _{C2}	32 + 28		V _{C2}	26 + 31		
$\bar{\mathbf{x}}$ of \mathbf{A} is $\geq 0.5 \bar{\mathbf{x}}$ of \mathbf{N}_{Vo} ?			$\bar{\mathbf{x}}$ of \mathbf{B} is $\geq 0.5 \bar{\mathbf{x}}$ of \mathbf{N}_{Vo} ?			\bar{x} of C is $\geq 0.5 \bar{x}$ of N_{VO} ?			
PASS		PASS			PASS				

Page **10** of **11** Report No: 15732

Issue: 1

Test Suspension and Test Results

Test Suspension (N) 10 ⁻⁶ :		Toct Su	uspension (N) 10 ⁻⁷ :	\bar{x}_{wm} of $N =$	2.5x10 ⁸	
		1631.31	ispension (N) 10 .	$N_0 = N/10 =$	2.5x10 ⁷	
V _{C1}	250	.,	30	lg N =	8.40	
	124 + 126	V_{C1}	12 + 18	lg N ₀ =	8.40	
V _{C2}	252	W	17	7.17 × ~ M × 7.70.2	PASS	
	136 + 116	V_{C2}	9 + 8	$7.17 \le \lg N_0 \le 7.70$?	PASS	

Real Conc. Of Product (%)*	Contact time (seconds)	Dilution step	V _{C1}		V _{C2}		$N_a = (\bar{x} \text{ or } \bar{x}_{wm}) \times 10$	lg N a	lg R
80 10	10	Neat	0 + 0	0	0 + 0	0	<1 4v10 ²	42.15	\F 2F
	10 ⁻¹	0 + 0	0	0 + 0	0	<1.4x10 ²	<2.15	>5.25	
50 10	Neat	0+0	0	0 + 0	0	<1.4x10 ²	<2.15	>5.25	
	10	10 ⁻¹	0 + 0	0	0 + 0	0	<1.4X10	\2.15	/3.25
1 10	10	Neat	>330 + >330	>660	>330 + >330	>660	>6.6x10 ⁴	>4.82	<2.58
	10	10 10-1	10 10-1 >330 +>330	>660	>330 + >330	>660			

^{*}Active to Non-Active ranges

 V_c = Count per 1ml (one plate or more)

 $\bar{\mathbf{X}}$ = Mean of V_{C1} and V_{C2}

 $\bar{\mathbf{X}}_{\mathbf{Wm}}$ = Weighted mean of $\bar{\mathbf{X}}$

 \mathbf{R} = Reduction ($\lg R = \lg N_0 - \lg N_a$)

Page **11** of **11** Report No: 15732

Issue: 1

Conclusion

For the product Biosan (4) (batch \$1/07/20), the bactericidal concentration determined according to EN1276, under clean conditions at 20°C using *Pseudomonas aeruginosa, Staphylococcus aureus, Enterococcus hirae,* and *Escherichia coli,* is 50%, when using a 10 second contact time.

Method deviation: A contact time of 10 seconds is below the specified minimum contact time for hand sanitisers in EN1276

Tested by / Authorised by:

Tested by: Authorised by:

Name: Joseph Fitzsimons Name: James Clarke

Title: Research Scientist Title: Head of Innovation

Test results only relate to the sample portion tested. Test reports shall not be reproduced except in full without written approval of 20/30 labs